Bioinformatics - 16/01/2025

Praanesh Balakrishnan Nair

March 7, 2025

Contents

1	Some Useful Programs	3
	1.1 Reverse Complement	
	1.2 Measure of Molecular weight	3
	1.3 Isoelectric point	
	1.4 Amino Acid Composition	
	1.5 Aromaticity	
2	Central Dogma of Molecular Biology	4
	2.1 Replication	4
	2.2 Transcription	
	2.3 Translation	
3	Antibiotics Sequencing	5
	3.1 What Antibiotic Sequencing is	5
	3.2 Why this is important	
	3.3 How Antibiotics are Sequenced	
	3.3.1 Mass Spectrometery	
4	Cyclopeptide Sequencing problem:	6
	4.1 Brute Force Cyclopeptide Sequencing:	
	4.2 Branch-and-Bound Algorithms	
	4.3 Leaderboard Cyclopeptide Sequencing	
5	Sequence Alignment	8
	5.1 Why Align Sequences?	8
	5.2 Types of Alignment	8
	5.2.1 Global Alignment	
	5.2.2 Local Alignment	10
	5.3 Longest Common Subsequence Problem	
6	Genome Assembly	11
	6.1 Ideas and Efforts	11
	6.1.1 Genome Wide Association Studies (GWAS)	11
	6.1.2 Next-Generation Sequencing	11
	6.1.3 Sanger Sequencing	
	6.1.4 Illumina	
	6.2 Why it's a big deal	
	6.3 The Procedure	

6.4	String	Reconstruction	12
	6.4.1	By Brute Force	12
	6.4.2	As Hamiltonian problem	12
	6.4.3	As Eulerian Problem	13

1 Some Useful Programs

1.1 Reverse Complement

from Bio.Seq import Seq

dna = Seq("ATGCCGTA")
print(f"Reverse Complement: {dna.reverse_complement()}")

1.2 Measure of Molecular weight

- 1. 1 Dalton (Da) = mass of a proton/ neutron
- 2. Mass of the molecule = sum of all the protons
- 3. Here's how you do it in Biopython

```
from Bio.SeqUtils.ProtParam import ProteinAnalysis
analysis = ProteinAnalysis("VKLFPWFNQY")
mass = analysis.molecular_weight()
print(f"Mass: {mass}")
```

1. Table of the weights of amino acids:

G	А	\mathbf{S}	Р	V	Т	\mathbf{C}	I/L	Ν	D	$\rm K/Q$	Ε	Μ	Η	F	R	Y	W
57	71	87	97	99	101	103	113	114	115	128	129	131	137	147	156	163	186

We have 20 amino acids, but only 18 integer masses.

1.3 Isoelectric point

- It's the pH where a molecule has 0 electric charge
- Code to find it in biopython:

from Bio.SeqUtils.ProtParam import ProteinAnalysis

```
analysis = ProteinAnalysis("VKLFPWFNQY")
isoelectric_point = analysis.isoelectric_point()
print(isoelectric_point)
```

1.4 Amino Acid Composition

from Bio.SeqUtils.ProtParam import ProteinAnalysis
dna = ProteinAnalysis("ATGCCGTA")

```
print(dna.count_amino_acids())
```

1.5 Aromaticity

from Bio.SeqUtils.ProtParam import ProteinAnalysis

```
dna = ProteinAnalysis("ATGCCGTA")
print(dna.aromaticity())
```

2 Central Dogma of Molecular Biology

"DNA makes RNA makes Proteins"

2.1 Replication

- Initiation
- Elongation
- Termination

2.2 Transcription

- DNA \Rightarrow RNA
- It's basically replacing T (Thymine) with U (Uracil)
- Ribonucleotides: Adenine, Uracil, Guanine, Cytosine
- To do it in Biopython:

```
from Bio.Seq import Seq
seq = Seq("AGTACACTGGT")
seq_transcribed = seq.transcribe()
print(f"Original: {seq}\nTranscribed: {seq_transcribed}")
```

2.3 Translation

- RNA \Rightarrow Protein
- Take 3 ribonucleotides (A, U, G, C) at a time
- Codon: A triplet of nucleotides

Number of Codons: $4^3 = 64$ Number of Amino Acids: 20

- Codons code for an amino acid. In other word, a codon is an encoding of an amino acid.
- A single amino acid can have multiple codons coding for it.
- Stop Codons:

These basically code to stop translation.

• To do it in Biopython:

```
from Bio.Seq import Seq
seq = Seq("AGTACACTGGTG")
seq_translated = seq.translate()
print(f"Original: {seq}\nTranslated: {seq_translated}")
```

3 Antibiotics Sequencing

3.1 What Antibiotic Sequencing is

- A mini protein/ peptide / short string of amino acids which can kill a bacterium, is called an **antibiotic**.
- Sequencing an antibiotic refers to determining its chemical structure.

3.2 Why this is important

- **Drug Discovery**: Drugs like penicillin are life saving substances and they are derived from microbes.
- Synthetic Biology: This is where you modify antibiotics to make them more effective.

3.3 How Antibiotics are Sequenced

3.3.1 Mass Spectrometery

- You break down an antibiotic into ions.
- Ions are now passed through an electric field.
- The time taken for each ion tells us the mass of each ion (lighter ions move faster, which heavier ions move slower).
- The $\frac{mass}{charge}$ ratio is calculated for each ion.
- Every time this ratio peaks, you know that a fragment/subpeptide has passed by (and not just small ions).
- These peak values are called a **spectrum**, and scientists use this to reconstruct an antibiotic.
- 1. Experimental Spectrum
 - The spectrum you get from a mass spectrometer is called an experimental spectrum.
- 2. Theoretical Spectrum
 - The spectrum that you theoretically calculate is called a theoretical spectrum

- It constains the mass of every possible sebpeptide, plus 0 and the mass of the peptide.
- eg. Peptide Given = LNEQ Spectrum:

L N Q E LN NQ EL QE LNQ ELN QEL NQE LNQE

So you're given with something like [0, 97, 99, ... 497].

- 3. Noisy Spectra
 - False mass: Present in Experimental Spectrum, missing in theoretical spectrum
 - Missing mass: Present in theoretical spectrum, missing in experimental spectrum
 - Score: Number of masses common in both spectra.

4 Cyclopeptide Sequencing problem:

Given a theoretical spectrum, find out the peptide.

4.1 Brute Force Cyclopeptide Sequencing:

- The mass of the entire peptide is usually known.
- Algorithm:
 - 1. Generate all peptides with given mass.
 - Say it's 1322. Find all 1-mers, 2-mers, 3-mers ... k-mers which have a mass of 1322
 - The number of k-mers you can form from a peptide of length n is n k + 1
 - The length of the sequence given n k-mers, is n + k 1

Number of k-mers = Length of peptide -k + 1

- 2. Form the theoretical spectrum for each and every k-mer you generated
- 3. Look for matches with given spectrum.
- You may not get the old peptide back, because there can be different amino acids with the same mass, and moreover, you can have different **combinations** of amino acids with same mass of the original peptide.

4.2 Branch-and-Bound Algorithms

Say this was the spectrum given:

0	97	97	99	101	103	196	198	198	200	202	295	297	299	299	301	394	396	398	400	40
---	----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	----

1. Find the amino acids whose weights lie in the spectrum.

G	А	\mathbf{S}	Р	V	Т	С	I/L	Ν	D	$\rm K/Q$	Ε	Μ	Η	\mathbf{F}	R	Υ	W
57	71	87	97	99	101	103	113	114	115	128	129	131	137	147	156	163	186

(Let's take the first 4 1-mers)

P V

Ť

С

1. Now make all 2-mers out of these 4 1-mers. Basically add all 18 amino acids to each 1-mer

\mathbf{PG}	PA	\mathbf{PS}	\mathbf{PP}	\mathbf{PV}	\mathbf{PT}	\mathbf{PC}	PI/PL	PN	PD	PK/PQ	\mathbf{PE}	\mathbf{PM}	\mathbf{PH}	\mathbf{PF}	\mathbf{PR}	$\mathbf{P}\mathbf{Y}$	\mathbf{PW}
VG	VA	VS	VP	VV	VT	VC	VI/VL	VN	VD	VK/VQ	VE	VM	VH	VF	VR	VY	VW
TG	ТА	TS	TP	TV	TT	TC	TI/TL	TN	TD	TK/TQ	TE	TM	TH	TF	TR	TY	TW
CG	CA	CS	CP	CV	CC	CC	$\mathrm{CI/CL}$	CN	CD	CK/CQ	CE	CM	CH	CF	CR	CY	CW

1. In each of these 2-mers, find which lie in the given spectrum

\mathbf{PG}	PA	\mathbf{PS}	PP	\mathbf{PV}	\mathbf{PT}	\mathbf{PC}	PI/PL	PN	PD	PK/PQ	\mathbf{PE}	\mathbf{PM}	PH	\mathbf{PF}	\mathbf{PR}	ΡY	\mathbf{PW}
VG	VA	VS	VP	VV	VT	VC	VI/VL	VN	VD	VK/VQ	VE	VM	VH	VF	VR	VY	VW
TG	TA	TS	TP	TV	TT	TC	TI/TL	TN	TD	TK/TQ	TE	TM	TH	TF	TR	ΤY	TW
CG	CA	CS	CP	CV	CC	$\mathbf{C}\mathbf{C}$	$\mathrm{CI/CL}$	CN	CD	$\rm CK/CQ$	CE	CM	CH	CF	CR	CY	CW

And now we have:

PV PT PC

1. Now make all 3-mers out of these 3 2-mers. Basically add all 18 amino acids to each 2-mer

PVG	PVA	PVS	PVP	PVV	PVT	PVC	PVI/PVL	PVN	PVD	PVK/PVQ	PVE	PVM	PVH
PTG	PTA	\mathbf{PTS}	PTP	PTV	PTT	PTC	PTI/PTL	PTN	PTD	PTK/PTQ	PTE	\mathbf{PTM}	PTH
\mathbf{PCG}	PCA	\mathbf{PCS}	PCP	PCV	PCT	PCC	$\mathrm{PCI}/\mathrm{PCL}$	PCN	PCD	$\mathrm{PCK}/\mathrm{PCQ}$	PCE	\mathbf{PCM}	PCH

1. In each of these 3-mers, find which lie in the given spectrum

PVG	PVA	PVS	PVP	\mathbf{PVV}	PVT	PVC	PVI/PVL	PVN	PVD	PVK/PVQ	PVE	\mathbf{PVM}	PVH
\mathbf{PTG}	PTA	\mathbf{PTS}	PTP	PTV	PTT	PTC	PTI/PTL	PTN	PTD	PTK/PTQ	PTE	PTM	PTH
PCG	PCA	\mathbf{PCS}	PCP	PCV	PCT	PCC	$\mathrm{PCI}/\mathrm{PCL}$	PCN	PCD	$\mathrm{PCK}/\mathrm{PCQ}$	PCE	\mathbf{PCM}	PCH

- If a k-mer is present in the theoretical spectrum, but the mass of the corresponding (k+1)-mer is also present in the spectrum, then that (k+1)-mer is said to be consistent.
- If a k-mer is present in the theoretical spectrum, but the mass of the corresponding (k+1)-mer is not present in the spectrum, then that (k+1)-mer is said to be inconsistent.

4.3 Leaderboard Cyclopeptide Sequencing

- 1. Add a 0 peptide to the leaderboard. This 0 peptide is the *leader-peptide*.
- 2. Keep finding k-mers that sum up to the given mass (say, 1322).
- 3. As and when you find a k-mer, find it's spectrum and give it a score (how similar it is to the experimental spectrum given)
- 4.

5 Sequence Alignment

5.1 Why Align Sequences?

- You can establish the following relationships:
 - 1. Functional Relationship
 - 2. Structural Relationship
 - 3. Evolutionary Relationship

5.2 Types of Alignment

5.2.1 Global Alignment

- 1. What it is
 - Align all letters from query and target
 - Sequence must be closely related/similar
 - Example: Needleman-Wunsch
- 2. How it works
 - (a) Initialization
 - Say we have two sequences ATGCT and AGCT
 - Among these two sequences, if the lengths of the sequences are m and n, then make a matrix of size $(m+1)\mathbf{x}(n+1)$

\mathbf{A}	\mathbf{T}	\mathbf{G}	\mathbf{C}	\mathbf{T}

A G C T

(b) Matrix Filling

Fill the matrix such that

- 1 = Match (added to diagonal element only)
- -1 = Mismatch (added to diagonal element only)
- -2 = Gap

- \mathbf{T} G \mathbf{C} \mathbf{T} Α -4 -6 -8 -10 0 -2 -2 Α G -4 \mathbf{C} -6 \mathbf{T} -8
- For top/left element you add -2, and for the immediate top-left diagonal element, you add +-1 depending on if it's a match or not
- The final value of the element, would the maximum of whatever you find

		А	Т	\mathbf{G}	\mathbf{C}	Т
	0	-2	-4	-6	-8	-10
А	-2	1	-1	-3	-5	-7
G	-4	-1	0	0	-2	-4
С	-6	-3	-2	-1	1	-1
Т	-8	-5	-2	-3	-1	2

(c) Trackback

You basically move from the bottom-right corner to the top-left corner. You can do this in 3 ways, and 'moving' means swapping the numbers

- ٠
- 3. Another example, where penalties are different
 - 1 = Match (added to diagonal element only)
 - -1 = Mismatch (added to diagonal element only)
 - -1 = Gap

C G T G A A Т Т С Т A 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 G -2 А -4 С -6 T -8 T -10 A -12 C -14 4. Code in biopython from Bio import pairwise2 # Given DNA sequences seq1 = "ATGCTAGC" seq2 = "ATGCTAGCTAGC" # Scoring parameters match = 1mismatch = -1 $gap_open = -2$ $gap_extend = -2$ # Perform global alignment alignments = pairwise2.align.globalms(seq1, seq2, match, mismatch, gap_open, gap_extend) # Print best alignment and score print(pairwise2.format_alignment(*alignments[0])) (a) from Bio import pairwise2 (b) pairwise2.align.globalms() (c) pairwise2.format_alignment(*alignments[0])

5.2.2 Local Alignment

- Align only the regions with higher similarity i.e. you align only substrings
- This is suitable for more divergent sequences

• Example: Smith-Waterman

- 1. What is is
- 2. How it works
 - (a) Initialization

	А	Т	G	С	Т
	0	0	0	0	0
А	0				
G	0				
\mathbf{C}	0				
Т	0				

(b) Matrix filling

- Fill the matrix such that
 - -1 = Match (added to diagonal element only)

 - -2 = Gap
- But the catch is that if you get a negative value, you make it zero. That's why the initialization is all zeroes. (It was -2, -4, etc..., but negative values are truncated to 0)

		А	Т	G	\mathbf{C}	Т
	0	0	0	0	0	0
А	0	1	0	0	0	0
G	0	0	0	1	0	0
С	0	0	0	0	2	0
Т	0	0	1	0	0	3

(a) Traceback

		А	Т	G	С	Т
	0	0	0	0	0	0
А	0	1	0	0	0	0
G	0	0	0	1	0	0
\mathbf{C}	0	0	0	0	2	0
Т	0	0	1	0	0	3

3. Another example

		G	А	А	Т	Т	С	А	Т	
	0	0	0	0	0	0	0	0	0	
С	0	0	0	0	0	0	1	0	0	
\mathbf{C}	0	0	0	0	0	0	1	0	0	
Т	0	0	0	0	1	1	0	0	1	
\mathbf{C}	0	0	0	0	0	0	2	0	0	
А	0	0	1	1	0	0	0	3	0	
Т	0	0	0	0	2	1	0	0	4	
G	0	1	0	0	0	0	0	0	0	

4. Code in biopython

```
from Bio import pairwise2
```

```
# Given DNA sequences
seq1 = "TGTGACTA"
seq2 = "CATGGTCA"
# Scoring parameters
match = 1
mismatch = -1
gap_open = -2
gap_extend = -2
# Perform local alignment (Smith-Waterman Algorithm)
alignments = pairwise2.align.localms(seq1, seq2, match, mismatch, gap_open, gap_extend)
```

```
# Print best local alignment and score
print(pairwise2.format_alignment(*alignments[0]))
```

5.3 Longest Common Subsequence Problem

6 Genome Assembly

It's the process of getting back a genetic sequence, using numerous short sequences called *reads*.

6.1 Ideas and Efforts

6.1.1 Genome Wide Association Studies (GWAS)

• You identify variations/mutations associated with a disease or the risk of getting a disease

6.1.2 Next-Generation Sequencing

- This is where you try to sequence DNA and RNA, by minimizing time and cost required.
- For instance, linearly sequencing isn't quick and cost-effective

6.1.3 Sanger Sequencing

• Up until early 2000s, this was used to sequence the genomes of many mammals.

6.1.4 Illumina

 $\bullet\,$ It's a machine that came in the late 2000s that reduces the cost of sequencing a human genome from \$3B, to \$10K

6.2 Why it's a big deal

• In 2010, Nicholas Volker's genome was sequenced and he became the first human saved because of sequencing. He had many surgeries done and this thing helped a lot

6.3 The Procedure

- The genomes you have are like a stack of multiple copies of a particular newspaper. Let's say you blast all of them into a bunch of pieces.
- Each copy would have blasted differently.
- Say we're looking for a phrase "An apple a day, keeps the doctor away".
- If the piece of one newspaper has the words "An apple a day, keeps", the piece of another newspaper has the words "day, keeps the doctor away", you can find the similarity between these pieces "day, keeps".
- One piece contains whatever was before this phrase, and another piece contains whatever was after. So you now have found the complete sentence.
- The same thing is happening with genomes too, just that each "piece" corresponds to a k-mer, and using a random order of k-mers, you'll have to find the original sequence.
- Each "piece" is knowns as a "read".

6.4 String Reconstruction

6.4.1 By Brute Force

- The procedure mentioned above, just that one whole newspaper is a sequence, and each piece is a $\mathbf{k}_{\mathrm{mer}}$
- Eg. Given 3-mers {AAT, ATG, GTT, GTT, TAA, TGT}, find the string:
 - Find the starting 3-mer, by looking at only the first two characters of all the 3-mers, and checking which 3-mer doesn't end with these two characters. It's TAA, because there's no k-mer starting with TA.

6.4.2 As Hamiltonian problem

- Given all reads are 3-mers (Example)
- 1. Form a graph of these 3-mers such that the suffix (last 2 characters) of one node, is the prefix (first 2 characters) of the next node
- 2. Hamiltonian path is the path where each and every **node** is visited only once Issues:
 - You can have multiple answers

6.4.3 As Eulerian Problem

- 1. Eulerian path is the path where each and every edge is visited only once
- 2. Then you find the the Debruijn Graph for this Issues:
 - Assumption that every read is a k-mer, is unrealitic
 - Assumption that every read is errorless
 - If there are errors, you'll get "bubbles" in the De Bruijn graph
 - Unknown multiplicity k-mer