
Bioinformatics - 16/01/2025

Praanesh Balakrishnan Nair

March 7, 2025

Contents

1 Some Useful Programs 3
1.1 Reverse Complement . 3
1.2 Measure of Molecular weight . 3
1.3 Isoelectric point . 3
1.4 Amino Acid Composition . 3
1.5 Aromaticity . 4

2 Central Dogma of Molecular Biology 4
2.1 Replication . 4
2.2 Transcription . 4
2.3 Translation . 4

3 Antibiotics Sequencing 5
3.1 What Antibiotic Sequencing is . 5
3.2 Why this is important . 5
3.3 How Antibiotics are Sequenced . 5

3.3.1 Mass Spectrometery . 5

4 Cyclopeptide Sequencing problem: 6
4.1 Brute Force Cyclopeptide Sequencing: . 6
4.2 Branch-and-Bound Algorithms . 6
4.3 Leaderboard Cyclopeptide Sequencing . 7

5 Sequence Alignment 8
5.1 Why Align Sequences? . 8
5.2 Types of Alignment . 8

5.2.1 Global Alignment . 8
5.2.2 Local Alignment . 10

5.3 Longest Common Subsequence Problem . 11

6 Genome Assembly 11
6.1 Ideas and Efforts . 11

6.1.1 Genome Wide Association Studies (GWAS) . 11
6.1.2 Next-Generation Sequencing . 11
6.1.3 Sanger Sequencing . 11
6.1.4 Illumina . 12

6.2 Why it’s a big deal . 12
6.3 The Procedure . 12

1

6.4 String Reconstruction . 12
6.4.1 By Brute Force . 12
6.4.2 As Hamiltonian problem . 12
6.4.3 As Eulerian Problem . 13

2

1 Some Useful Programs

1.1 Reverse Complement

from Bio.Seq import Seq

dna = Seq("ATGCCGTA")
print(f"Reverse Complement: {dna.reverse_complement()}")

1.2 Measure of Molecular weight

1. 1 Dalton (Da) = mass of a proton/ neutron

2. Mass of the molecule = sum of all the protons

3. Here’s how you do it in Biopython

from Bio.SeqUtils.ProtParam import ProteinAnalysis
analysis = ProteinAnalysis("VKLFPWFNQY")
mass = analysis.molecular_weight()
print(f"Mass: {mass}")

1. Table of the weights of amino acids:

G A S P V T C I/L N D K/Q E M H F R Y W
57 71 87 97 99 101 103 113 114 115 128 129 131 137 147 156 163 186

We have 20 amino acids, but only 18 integer masses.

1.3 Isoelectric point

• It’s the pH where a molecule has 0 electric charge

• Code to find it in biopython:

from Bio.SeqUtils.ProtParam import ProteinAnalysis

analysis = ProteinAnalysis("VKLFPWFNQY")
isoelectric_point = analysis.isoelectric_point()
print(isoelectric_point)

1.4 Amino Acid Composition

from Bio.SeqUtils.ProtParam import ProteinAnalysis
dna = ProteinAnalysis("ATGCCGTA")

print(dna.count_amino_acids())

3

1.5 Aromaticity

from Bio.SeqUtils.ProtParam import ProteinAnalysis

dna = ProteinAnalysis("ATGCCGTA")
print(dna.aromaticity())

2 Central Dogma of Molecular Biology

“DNA makes RNA makes Proteins”

2.1 Replication

• Initiation

• Elongation

• Termination

2.2 Transcription

• DNA ⇒ RNA

• It’s basically replacing T (Thymine) with U (Uracil)

• Ribonucleotides: Adenine, Uracil, Guanine, Cytosine

• To do it in Biopython:

from Bio.Seq import Seq
seq = Seq("AGTACACTGGT")
seq_transcribed = seq.transcribe()
print(f"Original: {seq}\nTranscribed: {seq_transcribed}")

2.3 Translation

• RNA ⇒ Protein

• Take 3 ribonucleotides (A, U, G, C) at a time

• Codon: A triplet of nucleotides

Number of Codons: 43 = 64
Number of Amino Acids: 20

• Codons code for an amino acid. In other word, a codon is an encoding of an amino acid.

• A single amino acid can have multiple codons coding for it.

• Stop Codons:

4

UAA UAG UGA

These basically code to stop translation.

• To do it in Biopython:

from Bio.Seq import Seq
seq = Seq("AGTACACTGGTG")
seq_translated = seq.translate()
print(f"Original: {seq}\nTranslated: {seq_translated}")

3 Antibiotics Sequencing

3.1 What Antibiotic Sequencing is

• A mini protein/ peptide / short string of amino acids which can kill a bacterium, is called an
antibiotic.

• Sequencing an antibiotic refers to determining its chemical structure.

3.2 Why this is important

• Drug Discovery: Drugs like penicillin are life saving substances and they are derived from
microbes.

• Synthetic Biology: This is where you modify antibiotics to make them more effective.

3.3 How Antibiotics are Sequenced

3.3.1 Mass Spectrometery

• You break down an antibiotic into ions.

• Ions are now passed through an electric field.

• The time taken for each ion tells us the mass of each ion (lighter ions move faster, which heavier
ions move slower).

• The mass
charge ratio is calculated for each ion.

• Every time this ratio peaks, you know that a fragment/subpeptide has passed by (and not just
small ions).

• These peak values are called a spectrum, and scientists use this to reconstruct an antibiotic.

1. Experimental Spectrum

• The spectrum you get from a mass spectrometer is called an experimental spectrum.

2. Theoretical Spectrum

• The spectrum that you theoretically calculate is called a theoretical spectrum
5

• It constains the mass of every possible sebpeptide, plus 0 and the mass of the peptide.

eg. Peptide Given = LNEQ Spectrum:

L N Q E LN NQ EL QE LNQ ELN QEL NQE LNQE
..

So you’re given with something like [0, 97, 99, ... 497].

3. Noisy Spectra

• False mass: Present in Experimental Spectrum, missing in theoretical spectrum

• Missing mass: Present in theoretical spectrum, missing in experimental spectrum

• Score: Number of masses common in both spectra.

4 Cyclopeptide Sequencing problem:

Given a theoretical spectrum, find out the peptide.

4.1 Brute Force Cyclopeptide Sequencing:

• The mass of the entire peptide is usually known.

• Algorithm:

1. Generate all peptides with given mass.

– Say it’s 1322. Find all 1-mers, 2-mers, 3-mers . . . k-mers which have a mass of 1322
– The number of k-mers you can form from a peptide of length n is n− k + 1

– The length of the sequence given n k-mers, is n+ k − 1

Number of k-mers = Length of peptide − k + 1

2. Form the theoretical spectrum for each and every k-mer you generated

3. Look for matches with given spectrum.

• You may not get the old peptide back, because there can be different amino acids with the same
mass, and moreover, you can have different combinations of amino acids with same mass of the
original peptide.

4.2 Branch-and-Bound Algorithms

Say this was the spectrum given:

0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

1. Find the amino acids whose weights lie in the spectrum.

G A S P V T C I/L N D K/Q E M H F R Y W
57 71 87 97 99 101 103 113 114 115 128 129 131 137 147 156 163 186

(Let’s take the first 4 1-mers)

6

P
V
T
C

1. Now make all 2-mers out of these 4 1-mers. Basically add all 18 amino acids to each 1-mer

PG PA PS PP PV PT PC PI/PL PN PD PK/PQ PE PM PH PF PR PY PW
VG VA VS VP VV VT VC VI/VL VN VD VK/VQ VE VM VH VF VR VY VW
TG TA TS TP TV TT TC TI/TL TN TD TK/TQ TE TM TH TF TR TY TW
CG CA CS CP CV CC CC CI/CL CN CD CK/CQ CE CM CH CF CR CY CW

1. In each of these 2-mers, find which lie in the given spectrum

PG PA PS PP PV PT PC PI/PL PN PD PK/PQ PE PM PH PF PR PY PW
VG VA VS VP VV VT VC VI/VL VN VD VK/VQ VE VM VH VF VR VY VW
TG TA TS TP TV TT TC TI/TL TN TD TK/TQ TE TM TH TF TR TY TW
CG CA CS CP CV CC CC CI/CL CN CD CK/CQ CE CM CH CF CR CY CW

And now we have:

PV
PT
PC

1. Now make all 3-mers out of these 3 2-mers. Basically add all 18 amino acids to each 2-mer

PVG PVA PVS PVP PVV PVT PVC PVI/PVL PVN PVD PVK/PVQ PVE PVM PVH PVF PVR PVY PVW
PTG PTA PTS PTP PTV PTT PTC PTI/PTL PTN PTD PTK/PTQ PTE PTM PTH PTF PTR PTY PTW
PCG PCA PCS PCP PCV PCT PCC PCI/PCL PCN PCD PCK/PCQ PCE PCM PCH PCF PCR PCY PCW

1. In each of these 3-mers, find which lie in the given spectrum

PVG PVA PVS PVP PVV PVT PVC PVI/PVL PVN PVD PVK/PVQ PVE PVM PVH PVF PVR PVY PVW
PTG PTA PTS PTP PTV PTT PTC PTI/PTL PTN PTD PTK/PTQ PTE PTM PTH PTF PTR PTY PTW
PCG PCA PCS PCP PCV PCT PCC PCI/PCL PCN PCD PCK/PCQ PCE PCM PCH PCF PCR PCY PCW

• If a k-mer is present in the theoretical spectrum, but the mass of the corresponding (k+1)-mer is
also present in the spectrum, then that (k+1)-mer is said to be consistent.

• If a k-mer is present in the theoretical spectrum, but the mass of the corresponding (k+1)-mer is
not present in the spectrum, then that (k+1)-mer is said to be inconsistent.

4.3 Leaderboard Cyclopeptide Sequencing

1. Add a 0 peptide to the leaderboard. This 0 peptide is the leader-peptide.

2. Keep finding k-mers that sum up to the given mass (say, 1322).

3. As and when you find a k-mer, find it’s spectrum and give it a score (how similar it is to the
experimental spectrum given)

4.
7

5 Sequence Alignment

5.1 Why Align Sequences?

• You can establish the following relationships:

1. Functional Relationship

2. Structural Relationship

3. Evolutionary Relationship

5.2 Types of Alignment

5.2.1 Global Alignment

1. What it is

• Align all letters from query and target

• Sequence must be closely related/similar

• Example: Needleman-Wunsch

2. How it works

(a) Initialization

• Say we have two sequences ATGCT and AGCT

• Among these two sequences, if the lengths of the sequences are m and n, then make a
matrix of size (m+ 1)x(n+ 1)

A T G C T

A
G
C
T

(b) Matrix Filling
Fill the matrix such that

• 1 = Match (added to diagonal element only)
• -1 = Mismatch (added to diagonal element only)
• -2 = Gap

A T G C T
0 -2 -4 -6 -8 -10

A -2
G -4
C -6
T -8

• For top/left element you add -2, and for the immediate top-left diagonal element, you
add +-1 depending on if it’s a match or not

• The final value of the element, would the maximum of whatever you find

8

A T G C T
0 -2 -4 -6 -8 -10

A -2 1 -1 -3 -5 -7
G -4 -1 0 0 -2 -4
C -6 -3 -2 -1 1 -1
T -8 -5 -2 -3 -1 2

(c) Trackback
You basically move from the bottom-right corner to the top-left corner. You can do this in 3
ways, and ’moving’ means swapping the numbers

•

3. Another example, where penalties are different

• 1 = Match (added to diagonal element only)
• -1 = Mismatch (added to diagonal element only)
• -1 = Gap

C G T G A A T T C A T
0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22

G -2
A -4
C -6
T -8
T -10
A -12
C -14

4. Code in biopython

from Bio import pairwise2

Given DNA sequences
seq1 = "ATGCTAGC"
seq2 = "ATGCTAGCTAGC"

Scoring parameters
match = 1
mismatch = -1
gap_open = -2
gap_extend = -2

Perform global alignment
alignments = pairwise2.align.globalms(seq1, seq2, match, mismatch, gap_open, gap_extend)

Print best alignment and score
print(pairwise2.format_alignment(*alignments[0]))

(a) from Bio import pairwise2
(b) pairwise2.align.globalms()
(c) pairwise2.format_alignment(*alignments[0])

9

5.2.2 Local Alignment

• Align only the regions with higher similarity i.e. you align only substrings

• This is suitable for more divergent sequences

• Example: Smith-Waterman

1. What is is

2. How it works

(a) Initialization

A T G C T
0 0 0 0 0

A 0
G 0
C 0
T 0

(b) Matrix filling

• Fill the matrix such that
– 1 = Match (added to diagonal element only)
– -1 = Mismatch (added to diagonal element only)
– -2 = Gap

• But the catch is that if you get a negative value, you make it zero. That’s why the
initialization is all zeroes. (It was -2, -4, etc. . . , but negative values are truncated to 0)

A T G C T
0 0 0 0 0 0

A 0 1 0 0 0 0
G 0 0 0 1 0 0
C 0 0 0 0 2 0
T 0 0 1 0 0 3

(a) Traceback

A T G C T
0 0 0 0 0 0

A 0 1 0 0 0 0
G 0 0 0 1 0 0
C 0 0 0 0 2 0
T 0 0 1 0 0 3

3. Another example

10

G A A T T C A T
0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 1 0 0
C 0 0 0 0 0 0 1 0 0
T 0 0 0 0 1 1 0 0 1
C 0 0 0 0 0 0 2 0 0
A 0 0 1 1 0 0 0 3 0
T 0 0 0 0 2 1 0 0 4
G 0 1 0 0 0 0 0 0 0

4. Code in biopython

from Bio import pairwise2

Given DNA sequences
seq1 = "TGTGACTA"
seq2 = "CATGGTCA"

Scoring parameters
match = 1
mismatch = -1
gap_open = -2
gap_extend = -2

Perform local alignment (Smith-Waterman Algorithm)
alignments = pairwise2.align.localms(seq1, seq2, match, mismatch, gap_open, gap_extend)

Print best local alignment and score
print(pairwise2.format_alignment(*alignments[0]))

5.3 Longest Common Subsequence Problem

6 Genome Assembly

It’s the process of getting back a genetic sequence, using numerous short sequences called reads.

6.1 Ideas and Efforts

6.1.1 Genome Wide Association Studies (GWAS)

• You identify variations/mutations associated with a disease or the risk of getting a disease

6.1.2 Next-Generation Sequencing

• This is where you try to sequence DNA and RNA, by minimizing time and cost required.

• For instance, linearly sequencing isn’t quick and cost-effective

6.1.3 Sanger Sequencing

• Up until early 2000s, this was used to sequence the genomes of many mammals.
11

6.1.4 Illumina

• It’s a machine that came in the late 2000s that reduces the cost of sequencing a human genome
from $3B, to $10K

6.2 Why it’s a big deal

• In 2010, Nicholas Volker’s genome was sequenced and he became the first human saved because of
sequencing. He had many surgeries done and this thing helped a lot

6.3 The Procedure

• The genomes you have are like a stack of multiple copies of a particular newspaper. Let’s say you
blast all of them into a bunch of pieces.

• Each copy would have blasted differently.

• Say we’re looking for a phrase “An apple a day, keeps the doctor away”.

• If the piece of one newspaper has the words “An apple a day, keeps”, the piece of another newspaper
has the words “day, keeps the doctor away”, you can find the similarity between these pieces “day,
keeps”.

• One piece contains whatever was before this phrase, and another piece contains whatever was after.
So you now have found the complete sentence.

• The same thing is happening with genomes too, just that each “piece” corresponds to a k-mer, and
using a random order of k-mers, you’ll have to find the original sequence.

• Each “piece” is knowns as a “read”.

6.4 String Reconstruction

6.4.1 By Brute Force

• The procedure mentioned above, just that one whole newspaper is a sequence, and each piece is a
kmer

• Eg. Given 3-mers {AAT, ATG, GTT, GTT, TAA, TGT}, find the string:

– Find the starting 3-mer, by looking at only the first two characters of all the 3-mers, and
checking which 3-mer doesn’t end with these two characters. It’s TAA, because there’s no
k-mer starting with TA.

6.4.2 As Hamiltonian problem

• Given all reads are 3-mers (Example)

1. Form a graph of these 3-mers such that the suffix (last 2 characters) of one node, is the prefix (first
2 characters) of the next node

2. Hamiltonian path is the path where each and every node is visited only once Issues:

• You can have multiple answers

12

def main():
k_mers = [’AGC’, ’TAG’, ’CTA’, ’ATG’, ’CGA’, ’AGC’, ’GCG’, ’TGC’, ’GCA’, ’GCC’, ’CAA’, ’AAA’, ’CCG’, ’AAG’, ’CCT’]
hamiltonian_problem(k_mers)

def hamiltonian_problem(k_mers):
start = None
for x in k_mers:

for y in k_mers:
if x[:1] == y[1:]:

break
start = x

if __name__ == "__main__":
main()

6.4.3 As Eulerian Problem

1. Eulerian path is the path where each and every edge is visited only once

2. Then you find the the Debruijn Graph for this Issues:

• Assumption that every read is a k-mer, is unrealitic

• Assumption that every read is errorless

– If there are errors, you’ll get “bubbles” in the De Bruijn graph

• Unknown multiplicity k-mer

13

	Some Useful Programs
	Reverse Complement
	Measure of Molecular weight
	Isoelectric point
	Amino Acid Composition
	Aromaticity

	Central Dogma of Molecular Biology
	Replication
	Transcription
	Translation

	Antibiotics Sequencing
	What Antibiotic Sequencing is
	Why this is important
	How Antibiotics are Sequenced
	Mass Spectrometery

	Cyclopeptide Sequencing problem:
	Brute Force Cyclopeptide Sequencing:
	Branch-and-Bound Algorithms
	Leaderboard Cyclopeptide Sequencing

	Sequence Alignment
	Why Align Sequences?
	Types of Alignment
	Global Alignment
	Local Alignment

	Longest Common Subsequence Problem

	Genome Assembly
	Ideas and Efforts
	Genome Wide Association Studies (GWAS)
	Next-Generation Sequencing
	Sanger Sequencing
	Illumina

	Why it's a big deal
	The Procedure
	String Reconstruction
	By Brute Force
	As Hamiltonian problem
	As Eulerian Problem

